Constrained knots in lens spaces

Fan Ye, University of Cambridge, Email: fy260@cam.ac.uk, Homepage: http://faniel.wiki/about/

Motivation

- Constrained knots are generalizations of 2-bridge knots in S^{3} and simple knots in lens spaces (see the following examples).
- Kronheimer and Mrowka conjectured that for any knot K in any closed 3-manifold, the knot Floer homology $\widehat{\operatorname{HFK}}(Y, K)$ with \mathbb{C} cofficient is isomorphic to the instanton knot homology $K H I(Y, K)$. It is known that this conjecture holds for all alternating knots, which include all 2-bridge knots.

Examples

The left-handed trefoil knot is the 2-bridge knot $\mathfrak{b}(3,1)$.

Left: a doubly-pointed Heegaard diagram of the trefoil knot. By parameterization, it is $C(1,0,1,3,1)$.
Right: a doubly-pointed Heegaard diagram of a simple knot in the lens space $L(5,2)$. By parameterization, it is $C(5,3,2,1,0)$. Note that $L(5,2) \cong L(5,3)$.

Construction of a constrained knot

The right figure is a doubly-pointed Heegaard diagram ($T^{2}, \alpha_{1}, \beta_{1}, z, w$) of a constrained knot K in the lens space $L(5,2)$. The Heegaard diagram $\left(T^{2}, \alpha_{0}, \beta_{0}\right)$ illustrates a standard Heegaard splitting of the lens space $L(5,2)$. The curve α_{1} is the same as α_{0} and the curve β_{1} is chosen to be disjoint from β_{0}. Two basepoints z and w indicate how to contruct the knot $K=a \cup b$: choose an arc a (resp. b) in $T^{2} \backslash \alpha_{1}$ (resp. $T^{2} \backslash \beta_{1}$) connecting z to w and push it in the handlebody corresponding to α_{1} (resp. β_{1}).

Main results

- [Ye20] There is a complete classification of constrained knots for the following parameterization. - [LY20, BLY20, LY21] For a constrained knot K, its knot Floer homology $\widehat{H F K}(K)$ is isomorphic to its instanton knot homology $K H I(K)$, which are both determined by the Turaev torsion of K. The isomorphism $\widehat{H F K}(K) \cong K H I(K)$ can be generalized to torus knots in S^{3} and lens spaces, and $(\pm 2, p, q)$ pretzel knots for odd integers p and q.

Parameterization: $C(p, q, l, u, v)$
Cut the diagram along β_{0} and glue along α_{0} :

Relation to orientable 1-cusped hyperbolic manifolds

Snappy program provides a list of 59068 orientable 1-cusped hyperbolic manifolds with at most 9 ideal tetrahedra. It can be verified that 21922 manifolds are complements of constrained knots, which, in particular, include the manifolds before $m 130$. The full list can be found at http://faniel.wiki/about/. Note that the gap in the list (e.g. m005) is not orientable or not 1-cusped.
Name Filling Slope \& $C(p, q, l, u, v)$
$m 003(1,0) \&(10,3,3,1,0),(-1,1) \&(5,4,5,3,1)$ $(0,1) \&(5,4,5,3,1)$
$m 004(1,0) \&(1,0,1,5,2)$
$m 006(0,1) \&(15,4,2,1,0),(1,0) \&(5,3,4,3,1)$
$m 007(1,0) \&(3,1,2,3,1)$
$m 009(1,0) \&(2,1,2,5,2)$
m010 (1,0)\&(6,5, 6,3,1)
$m 011(1,0) \&(13,3,3,1,0),(0,1) \&(9,4,9,3,1)$ $m 015(1,0) \&(1,0,1,7,2)$
$m 130(1,0) \&(16,3,6,1,0),(0,1) \&(16,7,16,3,1)$ $m 135$ Not from any constrained knot

References

[BLY20] John A. Baldwin, Zhenkun Li, and Fan Ye. Sutured instanton homology and Heegaard diagrams.
ArXiv: $2011.09424, ~ v 1,2020$.
[LY20] Zhenkun Li and Fan Ye.
Instanton Floer homology, sutures, and
Heegaard diagrams.
ArXiv: 2010.07836, v2, 2020.
[LY21] Zhenkun Li and Fan Ye. Instanton Floer homology, sutures, and Euler characteristics.
ArXiv: 2011.09424, v1, 2021.
[Ye20] Fan Ye.
Constrained knots in lens spaces
ArXiv:2007.04237, v1, 2020.

